Catford

Coding
Club

Flappy Cappy

A PYTHON GAME
CATFORD CODING CLUB

Table of Contents

2 10 PP 1
1011 Vo [T g =d s [N o T=Ted <=1 (o]U] o [« F TP 2
PaXo (o ITa =3 Wet-T o)V o -] - NN PP PP PPRPRPRR 6
GraVity @N0 MOVEIMENT ..o it e et ettt et eaea e eataeaaaeaneantnsaseenssssnsnssnsessnsnssssnssesnssesssnenesnsnssnsnsensnnes 8

Building the buildings

Catford
Coding
1 Flappy Cappy Lt

About the game
e We’re using the P5 library in Python to provide a graphical environment.
e The game is inspired by Flappy Bird, but it’s better, because it has a capybara.
e Capybaras are native to South America, but ours lives mostly in Catford.
e That’s why, when the cold of winter bites, she flies south in search of warmth.
e Our code will be broken into functions to keep it clean. P5 has 2 key inbuilt functions.
e Firstis setup(), where we can load in resources and set up variables etc.
e Second is draw(), and this runs over and over, 60 times a second, providing our ‘game loop’

e Sologinto https://strivemath.org/ide and let’s get started...

Catford
Coding
2 Flappy Cappy club

Building the background

Go to strivemath.org/ide and open a new project. You’ll # Import libraries
see that the setup() and draw() functions are already import random
there for you. But before we use them, we’re going to

. . ; # Set constants
import a library we need, and set up a few variables.

SCREEN = [600, 400]
CAPPY_START = [50, 200]

Variable names are case-sensitive. Variables that don’t CAPPY_W = CAPPY_H = 64
vary are called constants, and it’s a good idea to type CLOUD_SPEED = 0.3
these in capitals, so you know not to change them.

level =1
Make some new lines above the setup() function, and Eizgejso

add this code. frame_count = 0
Declaring variables here makes them slightly easier to

access. If we do it in the setup() function, we also have to

explicitly make them global there.

I’ve uploaded some graphics to your account - click
the icon on the top-left of your page to see them.
Hover over ‘cloud’ and it will show the word ‘copy’.
Click, and it will copy the address of the image to
your clipboard. Each of you will have a slightly
different address, so don’t copy someone else’s!

Now, beneath the variables, type:

assets =

then hit ctrl-v to paste the address. You’ll notice it is
loooong!

That’s why we’re assigning it to a variable. There’s
not much room in the text editor, so it’s better if we
can type ‘asset’ each time, rather than fill it with
long URLs.

Now delete the actual filename —the bit after the
final slash (/). So it looks like this.

Flappy Cappy

Catford
Coding

Club
Home Editor WorkSheet About
All My uploads Images
T——

@
- o P

cloud cappy_3 . cappy
A

assets =

"https://ezpwmmfaodhpebjbmury.supabase.co/storage/
v1/object/public/assets/d9ea3bf8-b645-47a5-b0e8-
4fc65f7df8c0/"

Now, in your setup() function, we’ll set the
screen dimensions (using the SCREEN
constant we set up earlier) and the frame
rate.

We’ll declare a couple of global variables
that we’ll use to draw the clouds...

...and then we’ll populate them. cloudpic is
the image object, and we ‘load’ our image

into it using the URL we copied earlier. Rather

than pasting the whole long folder path, we’ll

concatenate the variable that holds it (asset)

with the filename (cloud.png)

cloudlist is a list of all the clouds on our
screen. Each of those ‘clouds’ is itself a list,
containing the x and y coordinates of each
cloud (note the double square brackets!).

To begin with, we’re adding a single cloud to
this list, with random coordinates.

Flappy Cappy

def setup():
createCanvas(SCREENJ[0], SCREENI[1])
frameRate(60)

Declare and set globals
global cloudpic, cloudlist

Add the first cloud to the cloudlist array
cloudpic = loadlmage(assets+"cloud.png")

Catford
Coding
Club

cloudlist = [[random.randint(0, 600), random.randint(100, 400)]]

Catford
Coding
Flappy Cappy L

Moving to the draw() function, let’s render those
clouds. First, I’'m going to add some globals -
we don’t need them just yet, but we will soon,
and since we’re here at the start...

Next we fill in the background. We do this every
frame, to delete the previous frame’s images.

Now we’ll roll a 300-sided dice to decide
whether to add (or ‘append’) a new cloud to our
cloudlist.

Finally, loop through every item in cloudlist and
use image() to draw it. The first parameter is the
image we defined in setup(), then cloud[0] and
cloud[1] are the x and y coordinates, stored in
cloudlist.

Once each cloud is drawn, we move it to the left
by subtracting CLOUD_SPEED from the x value,
then we check whether it will be off the screen:
if itis, we remove it from the list.

def draw():
global cappy_index, frame_count, x, y, x_speed, y_speed

Draw background and clouds
background("#99ddff")

A 1in 300 chance to add another cloud to the list
chance =random.randint(1,300)
if chance ==

cloudlist.append ([500, random.randint(100, 380)])

for cloud in cloudlist:
image(cloudpic, cloud[0], cloud[1])
cloud[0]-= CLOUD_SPEED
if cloud[0] < O-cloudpic.width:
cloudlist.remove(cloud)

cloudpic.width

(cloud[®], cloud[1])

ﬁ
x=8-cloudpic.width

Catford
Coding
6 Flappy Cappy gk

Adding a capybara

Because we like to make life difficult, and a Flappy Cappy really ought to flap, we’re going to animate the capybara.
To do this, we’ll make a list of loaded images, each with the wings in a different position, and cycle through them
every few frames.

At the top of your code, where you set up those cappy =[]

first variables, add another 2: cappy[] (the cappy_index =0
brackets signify that it is a list), and

cappy_index, to keep track of which animation

frame we’re on.
Load the image frames that make the Cappy animation

forii 2.
In the setup() function, use a for loop to add 4 oriin range(4))

)) cappy.append(loadimage(assets + "cappy_"+str(i)+".png"))
images to the cappy list. Can you see how the

number of the loop is used to specify the file

name?

We’ll use x and y as variables to store the x = CAPPY_START[O0]
position of Cappy. Set these to the first and y = CAPPY_START[1]
second items in the CAPPY_START list.

. lobal cloudpic, cloudlist, x,
Add x and y to your setup’s global declaration. & . Y

7 Flappy Cappy

In the draw() function, below your cloud code add
this. Be careful to get your indentation right!

The first line draws cappy, specifically the image
loaded for cappy[0], at coordinates x, y

Next, we add one to the frame count, keeping track
of how many times the game loop has run.

The final bit states that every 6 loops Cappy should
should move on to the next image frame.

Catford
Coding
Club

Draw Cappy
image(cappy[cappy_index], x, Y)

Advance frame every 6 draw calls (~10 fps at 60 fps)
frame_count += 1
if frame_count % 6 ==

cappy_index = (cappy_index + 1) % len(cappy)

The last 2 lines use a mathematical operator you may not be familiar with - modulus, which is inexplicably

designated by a % sign. Modulus just means remainder. So the condition reads, “if the remainder is 0 when dividing

frame_count by 6...” In other words, when frame_count equals 6, 12, 18, 24... etc.

The action to move the frame forward uses this cleverly: because our frames go from 0 - 3, when we pass 3 we have

to loop back to 0. Instead of adding 1 each time and checking whether we’ve reached 3, we set the index to the
modulus of itself +1 divided by the total (4). S0, 1% 4=1;2%4=2;3 % 4 =3; But4 % 4 =0, providing an automatic

reset back to the first frame &

8 Flappy Cappy
Gravity and movement
Add another constant at the top of the code. This GRAVITY = 0.1
will decide the strength of gravity. Also add

y_speed =0

variables for x_speed (how fast the screen scrolls)
andy_speed (how fast Cappy falls).

At the bottom of the draw() function, add these
lines to increasey_speed due to gravity. The
conditions are to stop her disappearing off the
canvas, but if she’s neither at the top or the bottom
already, her y-coordinate is decreased to move her
downwards in the next frame.

But this causes an error! Why? Well, we’re allowed
to read the y value in our function, but we’re not
allowed to change it. To change it, we have to make
it global. So...

Add x, y, x_speed and y_speed to the global line.
Run the code, and check that Cappy falls.

Xx_speed =1

Adjust y_speed
y_speed =y_speed + GRAVITY

if (y<20):
y_speed =0
elif y > 350:
y_speed =1
y -=y_speed
else:
y -=y_speed

Catford
Coding
Club

global cappy_index, frame_count, X, y, x_speed, y_speed

Catford

Coding
9 Flappy Cappy o
Of course she needs to fly, as well as falling. def mousePressed():
There’s a built-in function, for this, mousePressed() ilOb;‘éy—Speed’ y
if y<20:
y+=10

Put this at the bottom of your code. Because the
draw function doesn’t change y when it’s below a
certain value, we’ll give her a little jump if she’s at
the bottom of the screen.

y_speed -=3

