

Year 8 – Intro to Python programming
Lesson 5 – Round and round

Worksheet

Page 1 Last updated: 20-04-21

Count

 Worked example .
What will this program display when it is executed?

1

2
3

4

count = 3

print(count)
count = count-1

print(count)

When executing a program, it is useful to use a trace table, to keep track of the current
line that is being executed, the values of variables, and the output produced.

line count output

1 3

2 3

3 2

4 2

The answer to the question is in the rightmost column of the table: the program will
display 3 and 2.

Page 2

 Task 1 .
This program extends the one from the worked example on the previous page.

1

2
3

4

count = 3

print(count)
count = count-1

print(count)

5

6
7

count = count-1

print(count)
count = count-1

When executing a program, it is useful to use a trace table, to keep track of the current
line that is being executed, the values of variables, and the output produced.

The first rows of the trace table have been filled in (from the worked example on the
previous page). Complete the rest of the rows.

line count output

1 3

2 3

3 2

4 2

5

6

7

Page 3

What will this program display when it is executed? The answer to the question is in the
rightmost column of the table.

 Task 2 .
This program seems to be repeating the same actions over and over again.

1

2
3

4
5

6
7

count = 3

print(count)
count = count-1

print(count)
count = count-1

print(count)
count = count-1

Step 1

In your programming environment, type the incomplete program below, which will use
while to repeat the block of actions.

Note: You won’t be able to run the program successfully until you fill in the missing
condition in the next step.

1
2

3
4

count = 3
while :

print(count)
count = count-1

Step 2

The value of count is initialised to 3 and decreased by one in every iteration.

Fill in the missing condition in the while loop using one of the options below, so that the
last value printed by the program is 1.

Page 4

A. while count > 1 :

B. while count >= 1 :

C. while count < 1 :

D. while count == 1 :

Syntax checklist

If you encounter an error message, read it and try to fix the problem. Use the list below
to check for common errors (and tick ✓ if you find yours).

 misspelt while

 forgot the colon : after the condition in while

 forgot to indent the statements in the while block

 Task 3 . Countdown

Step 1

Modify a single line in your current program so that the countdown starts from 10
instead of starting from 3.

Step 2

Insert a single line in your current program so that the message Lift off! is displayed
when the countdown reaches zero.

Tip

This action needs to be executed after the iteration, so it should not be part of the while
block. Be careful with indentation.

 Task 4 . Skip counting upwards

Modify your current program so that it starts from 1 and skip counts over every 3
numbers, until it exceeds 19 (i.e. the program should print 1, 4, 7, 10, 13, 16, and 19).

Tip

There are three statements that you will need to modify in your program:

▢ The assignment that determines where the counting starts

▢ The assignment that determines how count is modified in each iteration

Page 5

▢ The condition that determines whether or not the iteration should continue

Tip

If your changes are incorrect, your program may keep displaying values forever! In that
case, terminate your program (look for a ‘Stop’ button or try pressing Ctrl+C).

 Explorer task . The element of time
The time module includes a function called sleep that allows your program to wait for
a given number of seconds. Import sleep at the start of your program:

 from time import sleep

Use sleep in your counting program, so that there is a one-second delay between each
of the numbers being printed.

 sleep(1)

Year 8 – Intro to Python programming
Lesson 5 – Round and round

Worksheet

Page 1 Last updated: 20-04-21

Times tables practice

 Worked example . Countdown

The program below displays a sequence of numbers, starting from 10 and counting
down to 1.

1
2
3
4
5

count = 10
while count >= 1:
 print(count)
 count = count-1
print("Lift off")

The count variable keeps track of the current number. It is assigned an initial value of 10
(line 1) and decreased by 1 at the end of each iteration (line 4).

The condition in the while statement checks the value of count (line 2) to make sure
that the iteration will continue as long as count is at least 1.

 Worked example . Ten sixes

The program below simulates an experiment in which a dice is rolled repeatedly, until the
number six has been rolled ten times.

Two counter variables are used: rolls keeps track of the total number of dice rolls and
sixes keeps track of the number of sixes rolled. The former is increased in every
iteration, whereas the latter is only increased when a six is rolled.

1
2
3
4
5

from random import randint
rolls = 0
sixes = 0
while sixes < 10:
 dice = randint(1,6)

Page 2

6
7
8
9

10

 print(dice)
 if dice == 6:
 sixes = sixes + 1
 rolls = rolls + 1
print("Ten sixes in", rolls, "dice rolls")

Times tables practice
In Key Stage 2, pupils learn their times tables through constant practice. You will create a
program that will help with their practice by producing random times tables questions
and providing immediate feedback.

You will start with a version that poses a single question and then extend it to ask
multiple questions.

 Task 1 . A practice question

Open the Python program below (ncce.io/py-times-50) in your development
environment. It generates a single random times tables question and checks the user’s
answer to provide appropriate feedback.

1

2
3

4
5

6

7
8
9

10
11

from random import randint

a = randint(2,12)
b = randint(2,12)

print(a, "times", b, "=")
answer = int(input())

product = a * b

if answer == product:
 print("That is correct")
else:
 print("I am sorry")
 print(a, "times", b, "is", product)

Step 1

https://ncce.io/py-times-50

Page 3

In order to generate multiple questions, insert all of the statements in the rectangle
(lines 2 to 11) into a while statement, so that they are repeated.

Use True as the condition in the while statement. This means ‘repeat forever’.

 while True:

code for a single question

Step 2

Run your program. It will never stop asking questions, so you will need to terminate it
(look for a ‘Stop’ button or try pressing Ctrl+C).

Syntax checklist

If you encounter an error message, read it and try to fix the problem. Use the list below
to check for common errors (and tick ✓ if you find yours).

 misspelt while or True

 forgot the colon : after the condition in while

 forgot to indent the statements in the while block

Step 3

Introduce a variable called questions to keep track of the number of questions that
have been posed to the user.

There are two modifications that you will need to make to your program:

▢ Assign an initial value to questions.

▢ Increase the value of questions by 1 in each iteration.

To make sure that questions is initialised and modified properly, use print to display
the value of questions, anywhere within the while block.

 print("Question", questions)

Tip

The value of questions must be increased in every iteration, so the corresponding
statement must be inside the while block. Be careful with indentation.

Step 4

Page 4

Modify your program so that it asks exactly three questions.

There is only one modification that you will need to make to your program:

▢ Replace the True condition with a condition that checks the value of questions.
The iteration should only continue if the number of questions posed does not
exceed three.

 Explorer task . Measure performance

Introduce a variable called correct to keep track of the number of questions that the
user has answered correctly.

There are two modifications that you will need to make to your program:

▢ Assign an initial value to correct.

▢ Increase the value of correct by 1 every time the user answers a question
correctly.

At the end of the game, display the number of correct answers.

Example
Note: The numbers here are examples and they will be different every time the program is executed.

At the end of the game, the
program displays a message with
the number of correct answers.

You answered 2 out of 3 correctly

 Explorer task . Measure performance

Modify the program so that it keeps asking questions until the user has answered three
of them correctly.

There is one modification that you will need to make to your program:

▢ Check the value of the correct variable in the condition of the while statement.

Example
Note: The numbers here are examples and they will be different every time the program is executed.

At the end of the game, the
program displays a message with
the number of correct answers.

You answered 3 out of 5 correctly

Page 5

 Explorer task . The user sets the limits

The three-question limit is arbitrary. Extend the program to ask the user, before the
game begins, what the total number of questions or the total number of correct answers
should be.

Resources are updated regularly — the latest version is available at: ncce.io/tcc.

http://ncce.io/tcc

