

Year 8 – Intro to Python programming
Lesson 6 – Putting it all together

Worksheet

Page 1 Last updated: 20-04-21

Lucky number revisited

 Worked example from the last lesson . Countdown

The program below displays a sequence of numbers, starting from 10 and counting
down to 1. The count variable is used to keep track of the current number.

1
2
3
4
5

count = 10
while count >= 1:
 print(count)
 count = count-1
print("Lift off")

 Worked example from the last lesson . Times tables

The program below asks the user a series of times tables practice questions and
provides feedback. The questions variable is used to keep track of how many
questions have been asked.

1

2
3

4
5

6
7

8
9

10

from random import randint

questions = 0
while questions < 3:

 a = randint(2,12)
 b = randint(2,12)

 print(a, "times", b, "=")
 answer = int(input())

 product = a * b
 if answer == product:
 print("That is correct")

Page 2

11
12
13

14

 else:
 print("I am sorry")
 print(a, "times", b, "is", product)

 questions = questions + 1

 Task . Guess the number
Open the Python program below (ncce.io/py-lucky-60) in your development
environment. It picks a specific ‘lucky number’ and keeps asking the user to guess it.

1
2
3

4
5

6

7
8
9

10
11

lucky = 13

guessed = False

while guessed == False:

 print("Can you guess my lucky number?")
 guess = int(input())

 if guess != lucky:
 print("Sorry, it's not", guess)
 else:
 print("Amazing, you guessed it")
print("Nice playing with you")from random
import randint

The program uses a flag variable called guessed to keep track of whether or not the
user has guessed the lucky number. The variable is initialised to False (line 2), but it is
never set to True, so the game never terminates.

Step 1: Ending the game

Insert the following line in your program, wherever you think it should be.

⚑ guessed = True # raise the flag

This assignment sets guessed to True. It ‘raises the flag’ to indicate that the user has

https://ncce.io/py-lucky-60

Page 3

guessed the number. This should cause the game to end when the condition in while is
fulfilled.

Tip

Make sure that the guessed variable is set to True only in the case where the user
guesses the number.

Step 2: Counting guesses

Extend the program, so that it keeps track of how many times the user has attempted to
guess the lucky number.

At the end of the game, display this number to the user.

Example
Note: Use these numbers to test that your program works correctly. In general, the messages displayed
will depend on user input and will not always be the same.

The program displays a prompt
and waits for keyboard input.

Can you guess my lucky number?

The user types in a reply. 12

The program displays a message
that the user’s guess is incorrect.

Sorry, it's not 12

The program displays a prompt
and waits for keyboard input.

Can you guess my lucky number?

The user types in a reply. 13

The program displays a message
that the user’s guess is correct.

Amazing, you guessed it!

The program displays the
number of attempts.

It took you 2 guesses
Nice playing with you

Tip

Introduce a count variable to keep track of the number of user guesses.

Look at the count and question variables in the worked examples: they serve the
same purpose. They are assigned an initial value and modified in each iteration.

Page 4

Step 3: A limit to the guesses

This is the condition currently checked in the while statement:

 guessed == False

This means that the game will continue for as long as guessed is False, i.e. the user still
hasn’t guessed the lucky number.

Extend this condition, to also check that the user has not exceeded a certain number of
guesses. For example, the user may only be allowed three guesses.

 guessed == False and :

Tip

Your program uses the count variable to keep track of how many times the user has
attempted to guess the lucky number. Check this variable in the condition.

Look at how the count and question variables are checked in the while conditions of
the worked examples.

Step 4: Final word

At the end of the game, the current program displays the number of attempts that the
user made at guessing the number.

Extend the program so that at the end of the game:

▢ If the user managed to guess the lucky number, the program displays the number
of guesses required (like it currently does)...

▢ … and otherwise, if the user’s guesses were incorrect, the program displays the
lucky number to the user

Example
Note: This is an example of the user’s successful final attempt. In general, the messages displayed will
depend on user input and will not always be the same.

The program displays a prompt
and waits for keyboard input.

Can you guess my lucky number?

The user types in a reply. 13

Page 5

The program displays a message
that the user’s guess is correct,
and another one with the number
of guesses that were required.

Amazing, you guessed it!
It took you 2 guesses

Example
Note: This is an example of the user’s unsuccessful final attempt. In general, the messages displayed
will depend on user input and will not always be the same.

The program displays a prompt
and waits for keyboard input.

Can you guess my lucky number?

The user types in a reply. 12

The program displays a message
that the user’s guess is incorrect,
and another one with the actual
lucky number.

Sorry, it's not 12
My lucky number is 13

Page 6

 Explorer task . More information

In the current program, when a user’s guess is unsuccessful, they are only informed that
they didn’t guess the lucky number.

It would be great if the program provided some additional information, such as whether
the user should try a lucky number that is higher or lower than their current guess.

Example
Note: Use these numbers to test that your program works correctly. In general, the messages displayed
will depend on user input and will not always be the same.

The program displays a prompt
and waits for keyboard input.

Can you guess my lucky number?

The user types in a reply. 12

The program displays a message
with additional information about
the lucky number.

My lucky number is larger than 12

Example
Note: Use these numbers to test that your program works correctly. In general, the messages displayed
will depend on user input and will not always be the same.

The program displays a prompt
and waits for keyboard input.

Can you guess my lucky number?

The user types in a reply. 16

The program displays a message
with additional information about
the lucky number.

My lucky number is smaller than 16

Tip

When a user attempts to guess the lucky number, there are now three possible
outcomes, so you will need multi-branch selection (if, elif, else).

Page 7

 Explorer task . Randomness

In the current program, a specific lucky number is always selected.

 lucky = 13

Modify this assignment, so that a random integer between 1 and 20 (inclusive) is selected
as a lucky number.

 from random import randint
lucky = .

Tip

You will need to use the randint function, from the random module.

Resources are updated regularly — the latest version is available at: ncce.io/tcc.

This resource is licensed under the Open Government Licence, version 3. For more information on this
licence, see ncce.io/ogl.

http://ncce.io/tcc
http://ncce.io/ogl

